Multiplicity Results for Equations with Subcritical Hardy-sobolev Exponent and Singularities on a Half-space
نویسندگان
چکیده
We prove some multiplicity results for a class of singular quasilinear elliptic problems involving the critical Hardy-Sobolev exponent and singularities on a half-space.
منابع مشابه
The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملMultiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملSharp Hardy-littlewood-sobolev Inequality on the Upper Half Space
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...
متن کاملMultiple Solutions for Quasi-linear Pdes Involving the Critical Sobolev and Hardy Exponents
We use variational methods to study the existence and multiplicity of solutions for the following quasi-linear partial differential equation: ( −4pu = λ|u|r−2u+ μ |u| q−2 |x|s u in Ω, u|∂Ω = 0, where λ and μ are two positive parameters and Ω is a smooth bounded domain in Rn containing 0 in its interior. The variational approach requires that 1 < p < n, p ≤ q ≤ p∗(s) ≡ n−s n−pp and p ≤ r ≤ p ∗ ≡...
متن کامل